Купити
книгу,
скориставшись послугой
«КНИГА—ПОШТОЮ».
Математика. Довідник+тести.
Готуємося до ЗНО та ДПА самостійно
( 400 сторінок формату А4)
Фрагмент
для ознайомлення (~1 Mb, PDF)
Шановні старшокласники!
Результати Державної
підсумкової атестації
(ДПА) та зовнішнього незалежного оцінювання (ЗНО) є вкрай
важливі для
старшокласників. Сподіваюся, що посібник, який ви тримаєте в
руках, допоможе
якісно підготуватися до ЗНО та отримати гарну оцінку за ДПА
і високий
рейтинговий бал ЗНО.
Посібник охоплює
матеріал шкільного курсу
математики 5–11 класів. Теоретичний матеріал посібника,
зразки розв’язування
вправ, завдання для самостійного виконання складено
відповідно до чинних
програм для закладів загальної середньої освіти та
програми ЗНО з математики.
Усі завдання, які розв’язано в посібнику і які
запропоновано для самостійного
виконання, є типовими та аналогічними до тих, що
використовувалися протягом
останніх років для проведення ЗНО.
Розглянемо типи
завдань, які традиційно
пропонують на ЗНО.
1.
Завдання з вибором
однієї правильної відповіді. Завдання
складається з основи та п’яти варіантів відповіді,
з яких лише один правильний. Завдання вважають виконаним,
якщо учасник
зовнішнього незалежного оцінювання вибрав і позначив
відповідь у бланку відповідей
А.
2.
Завдання на встановлення
відповідності («логічні пари»). Завдання
складається з основи та двох стовпчиків інформації,
позначених цифрами (ліворуч) і буквами (праворуч).Виконання
завдання передбачає
встановлення відповідності (утворення «логічних пар») між
інформацією,
позначеною цифрами та буквами. Завдання вважають виконаним,
якщо учасник
зовнішнього незалежного оцінювання зробив позначки на
перетинах рядків (цифри
від 1 до 4) і колонок (букви від А до Д) у таблиці бланка
відповідей А.
3.
Завдання відкритої
форми з короткою відповіддю:
– структуроване, складається з основи та двох
частин і передбачає розв’язування
задачі. Завдання вважають виконаним, якщо учасник
зовнішнього незалежного
оцінювання, зробивши відповідні числові розрахунки, записав,
дотримуючись вимог
і правил, відповіді до кожної із частин завдання в бланку
відповідей А
– неструктуроване,
складається з основи та передбачає розв’язування задачі.
Завдання вважають виконаним, якщо учасник зовнішнього
незалежного оцінювання,
зробивши відповідні числові розрахунки, записав,
дотримуючись вимог і правил,
кінцеву відповідь у бланку відповідей А.
Під час виконання цих завдань потрібно отримати
числовий результат тієї
розмірності, яку вказано в умові. Цей результат є цілим
числом або скінченним
десятковим дробом.
4.
Завдання відкритої
форми з розгорнутою відповіддю. Завдання
складається з основи та передбачає розв’язування
задачі. Завдання вважають виконаним, якщо учасник
зовнішнього незалежного
оцінювання в бланку відповідей Б навів усі
етапи розв’язання та обґрунтував їх, зробив
посилання на математичні факти, з яких випливає те чи інше
твердження,
проілюстрував розв’язання задачі рисунками, графіками тощо.
Весь
матеріал посібника поділено на 24 теми з алгебри
і початків аналізу та 12 тем з геометрії. Кожна тема
теоретичного матеріалу
містить одну-дві вправи для самостійного розв’язування, що
допоможе вам
зрозуміти, чи добре засвоєно теоретичний матеріал. У свою
чергу кожне завдання
містить два однотипних варіанти (їх позначено літерами А і
Б, наприклад,
«Вправа 1А» та «Вправа 1Б»). За наявності часу, наприклад,
якщо ви почали
готуватися до ЗНО на початку 10 класу, автор пропонує
розв’язувати обидва ці
варіанти. Якщо ж часу для підготовки до ЗНО замало, – хоча б
один з них. До
кожної теми в посібнику подано 30 вправ з алгебри та
початків аналізу і 15
вправ з геометрії, кожна з яких, як зазначено вище, у двох
варіантах.
Вправи, що
відповідають програмі з математики
5–9 класів, містять такі типи завдань:
1.1–1.6.
Завдання
з вибором однієї правильної відповіді.
2.1. Завдання на встановлення відповідності.
3.1. Завдання відкритої форми з короткою
відповіддю – структуроване
завдання.
4.1–4.3. Завдання відкритої форми з короткою
відповіддю – неструктуроване
завдання.
Вправи, що відповідають
програмі з математики 10–11 класів, крім вказаних вище
типів, містять ще й
такий тип завдання:
5.1–5.2.
Завдання
відкритої форми з розгорнутою відповіддю.
Указаний
розподіл завдань відповідає характеристиці сертифікаційної
роботи ЗНО з
математики, що використовується в останні роки в Україні.
У кінці посібника
наведено два тренувальних
тести у форматі ЗНО. До всіх вправ та тренувальних тестів
посібника подано
відповіді.
Шановні
вчителі!
Сподіваюся, що
запропонований посібник
допоможе вам у підготовці випускників до складання ЗНО. Маю
надію, що посібник
стане в пригоді як під час групових (класних, факультативних),
так і під час
індивідуальних занять.
Посібник
допоможе узагальнити й систематизувати
навчальний матеріал курсу математики 5–11 класів та
підготувати учнів
безпосередньо до складання іспитів у форматі ЗНО.
Якщо Ви працюєте
за рівнем
стандарту (3 год на тиждень),
то підготувати учнів до
складання ЗНО непросто. Тому автор щиро сподівається, що
адміністрація
навчального закладу за рахунок варіативної частини навчального
плану школи надасть ще одну, а
краще дві години, яку вчителі зможуть
використати саме для підготовки до ЗНО. Посібник допоможе
швидко і якісно
повторити теоретичний матеріал відповідної теми (учні можуть
це
зробити як самостійно, так і під керівництвом учителя). А далі
можна під керівництвом
учителя (наприклад, під час класної роботи) розв’язати вправу
з позначкою «А»,
а вправу з позначкою «Б» запропонувати учням для самостійного
розв’язання
(наприклад, як домашнє завдання).
Якщо Вам пощастило
працювати на профільному
рівні (9 год на тиждень),
то важливо правильно спланувати
резервний час програми з математики. Автор пропонує
використовувати резервний
час (а можливо, ще й додаткові години варіативної складової
навчального плану)
саме для ефективної підготовки до ЗНО та діяти так, як
запропоновано в
попередньому абзаці.
Автор сподівається, що
посібник буде дуже
корисний і для вчителів, що проводять індивідуальні
заняття.
Залежно від регламенту заняття (45 хв, 60 хв, 90 хв, 120 хв
тощо) учитель зможе
знайти розумний «баланс» між теоретичною частиною теми
(пояснити її учню або
запропонувати йому ознайомитися з теоретичним матеріалом
самостійно) і
практичним наповненням теми (вправа «А»). При цьому вправу «Б»
доцільно
запропонувати учневі як домашнє завдання.
Маю надію, що майже
30-річний досвід роботи
автора посібника у звичайних та профільних класах, досвід
проведення
індивідуальних занять, написання підручників та посібників
для учнів та
вчителів 5–11 класів, який враховано під час підготовки
посібника, допоможе як
старшокласникам, так і вчителям.
З
повагою автор
Попередня книга Наступна книга